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Abstract A simple and straightforward analytical method is presented for calculating
the Marcus–Hush–Chidsey function. We present here an alternative derivation method
which leads to a simpler series analytical formula, based on the use of the binomial
expansion theorem. The convergence of the series is tested by calculating concrete
cases for arbitrary values of parameters. Comparison with available analytical results
validates the accuracy and efficiency of this method.
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1 Introduction

It is well known that, the Marcus theory has played a central role in various fields
of chemistry and biology including photosynthesis, corrosion, some types of chemi-
luminescence, charge separation in solar cells and heterogeneous electron transfer
[1–15]. Also, this theory applies to the outer sphere electron transfer and the potential-
dependence of electrochemical rate constants [16–19]. A great many important aspects
of biology and biochemistry involve electron transfer reactions. Most significantly, all
of respiration (the way we get energy from food and oxygen) and photosynthesis (they
way plants make the food and oxygen we consume) rely entirely on electron trans-
fer reactions between cofactors in proteins [19,20]. The Marcus theory of electron
transfer has been developed for inner-sphere electron transfer by Hush and Marcus
[20,21]. Note that the Marcus–Hush–Chidsey (MHC) theory is semiclassical in nature.
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Jorttner and Kuznetsov extended the theory by using quantum mechanical treatments
[22–25]. The MHC theory, given in paper [15], has been focused on fundamental
general aspects and results of specific systems. In recent years, an interesting series
of articles has been published to attempt analytical calculations of the MHC function
and its applications [5–17]. In spite of these developments, in analytical evaluation
of the MHC function, it remains a computational problem. Here we present a more
general analytical approach to the calculation of the MHC function which is valid for
arbitrary values of the integral parameters. As seen, the progress and practical appli-
cations of the heterogeneous electron transfer are dependent on accurate evaluation of
this function. The analytical expression is obtained in terms of binomial coefficients
and Error functions. Calculation results show that there is a good level of congruence
between the present method and direct numerical integration approaches. This method
improves significantly the accuracy of the MHC function and is fast enough for its
implementation in interpolating algorithms.

2 General definition and unified analytical relation for Marcus–Hush–Chidsey
function

The MHC function for single electron transition is defined as [16]:

Rox/red(�E, T, λ, γ )= γ
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where γ the coupling strength to the electrode, λ the reorganization energy and �E the
overpotential, e, kB, T are the electron charge, Boltzmann constant and temperature,
respectively. The ± signs refer to the oxidative and reductive transition rate constants.
In order to establish expressions for the MHC functions we shall first consider the well
known binomial expansion theorems as follows [26–29]:

(x ± y)n = lim
N→∞

N∑
m=0

(±1)m Fm(n)xn−m ym, (2)

Here N is the upper limit of summations and Fm(n) are binomial coefficients defined
by
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Finally, we substitute Eq. (2) in the integral representation Eq. (1). This procedure
yields the required series expansion for MHC function in terms of binomial coeffi-
cients:
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where the indices N is the upper limits of summation. In Eq. (4), function G(β, γ ) is
defined as [26]
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where Er f (x) is the well known Error function [26]

Er f (x) = 2√
π

x∫

0

e−t2
dt (6)

These analytical formulas offer the advantage of direct and precise calculation of the
MHC functions and of an easy parametrical investigation for evaluating the effects of
various parameters, without the use of numerical methods.

3 Numerical results and discussion

In this paper, an alternative analytical calculation scheme is proposed for the
MHC function. In numerical computation of the MHC function in Eq. (1) with
the datas reported in Tables 1, 2 and 3, the calculations were performed using
the scientific software Mathematica 7.0 with the values of constants kB =
8.6173324.10−5eV K −1 and γ = 1. The desktop computer with typical configura-
tion, Pentium, Intel (R), 2.20 GHz, 3.0 GB RAM, was utilized. To verify the repre-
sentations that we obtained for various cases, including the exact representation, we
compared the results of the new formulations with the results of a direct Mathematica
numerical integration technique. It is clear from Tables 1 and 2, the comparison results
between numerical integration and the analytical method proposed in this paper are
congruent with all sets of parameters. As can be seen from the calculation results, the
analytical formula is very convenient in practical applications. The discrepancy of the
some computation results between the numerical and the obtained formula arises from
insufficiencies in the numerical methods used for these values of parameters. Table 3
lists partial summations corresponding to progressively increasing upper summation
limits of Eq. (4) for this expression. As can be seen in Table 3, the computation results
demonstrate the improvements in convergence rates. The author believes that the for-
mula obtained in this paper is natural and it will be useful in practical applications of
the Marcus theory.
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Table 1 The comparative values of oxidative Marcus–Hush–Chidsey function for N ′ = 30

e�E (eV) λ (eV) T (K) Eq. (4) Mathematica numeri-
cal integration results

0.6 0.5 298 0.72380975102283 0.72564171035595

0.6 0.6 298 0.5 0.49999999999999

0.1 0.6 298 0.00383667573353 0.00297656139004

0.1 0.6 280 0.00287712193672 0.00223434298636

0.2 0.3 275 0.21795089233552 0.21473600812888

0.5 0.7 273 0.16738904171902 0.14162356353222

0.8 0.9 310 0.36976004664749 0.32800731650488

1.6 1.2 320 0.92500255224328 0.93653943633088

2.1 1.6 260 0.96907249397581 0.96756653770802

3.2 2.6 240 0.96634554917206 0.96544866158158

5.3 3.2 340 0.99999938135975 0.99999925414760

7.5 5.3 360 0.99993759288508 0.99993271246412

Table 2 The comparative values of reductive Marcus–Hush–Chidsey function for N ′ = 30

e�E(eV) λ(eV) T (K) Eq. (4) Mathematica numerical
integration results

0.6 0.5 298 5.157259853836677E−11 5.170312856131819E−11

0.6 0.6 298 3.562579701744072E−11 3.562579701744072E−11

0.1 0.6 298 7.811855345095961E−5 6.060576556314478E−5

0.1 0.6 280 4.560760931771201E−5 3.541769224379977E−5

0.2 0.3 275 4.710478859628959E−5 4.640996950519649E−5

0.5 0.7 273 9.848342023310416E−11 8.332428920685407E−11

0.8 0.9 310 3.647871183276227E−14 3.235959235267481E−14

1.6 1.2 320 5.851261170856247E−26 5.924239695867584E−26

2.1 1.6 260 1.907442550768151E−41 1.9044783503779525E−41

3.2 2.6 240 6.138796780075929E−68 6.133099221208672E−68

Table 3 Convergence of
derived expression Eq. (4) for
R ox

red
(�E, T, λ, γ ) as a

function of summation limits N ′

N ′ λ = 0.2 eV ; e�E =
0.4 eV ; T = 275K

λ = 8.5 eV ; e�E =
5.7 eV ; T = 298K

4 0.9753595166354784 0.000011286741622096308

6 0.9753595166354784 0.000011286741622096308

8 0.9753595166354784 0.000011286741622096308

10 0.9753595166354784 0.000011286741622096308
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